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ABSTRACT

This study investigates the failure modes, failure strengths, and failure

criteria of laminated composite plates with stress concentration and subjected

to bending loading. Graphite/epoxy composites are used for the present study.

Lawina material properties, such as stiffness and strength, of the composite

are obtained by experiments. A series of bending tests are conducted for

laminated, graphite/epoxy composite plates with and without a hole to

investigate their failure modes and strengths. In addition, finite element

analyses are performed to compute stress distributions around holes of the

composite plates subjected to bending loading. Based on the stress

computation, a couple of failure criteria are examined to predict the failure

strengths of composite plates with stress concentration. Accesion For
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L INTRODUCTION

Many of current modem technologies require materials with unusual

combination of properties that cannot be met by conventional metal alloys,

ceramics, and polymeric materials. This is especially true for materials that

are needed for aerospace, underwater, and transportation applications. For

example, aircraft engineers are increasingly searching for structural materials

that are light, strong, stiff, and abrasion-, impact-, and corrosion- resistant.

Rapid increase in the use of advanced composites is primarily due to their

high strength-to-weight ratio and high stiffness-to-weight ratios, making

them ideally suited for the high technology construction. Naval structure

applications of composite materials are typically depending on this weight

saving when a composite material is used to fulfill stiffness or strength

requirements. The Navy has used composite materials since at least 1946

when two 28 foot personnel boats were designed using a laminated plastic.

Today, composites are used widely in the fleet and include items such as

submarine hatches and rudders, MK 46 torpedo propellers, minesweeper

hunters, and patrol crafts [Ref. 1].
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Failure of engineering materials is undesirable for several reasons; i.e,

human lives that are put in jeopardy, economic losses, and the interference

with the availability of products and services. Even though the causes of

failure and behaviors of materials may be known, prevention of failures is

difficult to guarantee. The usual causes are improper material selection and

processing, inadequate design of components, and their misuse. It is the

responsibility of the engineer to anticipate and plan for possible failure and,

in the event that failure does occur, to assess its cause and then take

appropriate preventative measures against future incidents.

The purpose of this study is to investigate the failure modes, failure

strengths, and failure criteria of laminated composite plates with stress

concentration and subjected to bending loading. Both experimental and

numerical studies are conducted for the study. As an experimental study,

four-point bending tests are undertaken to obtain lamina material properties

as well as to examine failure modes and strengths of laminated composite

plates with or without holes. As a numerical study, finite element analyses

are performed to determine the stress distributions around the holes. A

couple of failure criteria are evaluated using both the numerical and

experimental studies.
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IL LITERATURE SURVEY

In recent years, there have been significant studies to determine the

stiffness and strength of laminated composite materials. One of the common

experiments used to define the responses of composite materials is the

flexure test, in which the specimen is subjected to either a central load or

two quarter-point loads. In many cases, results of these tests are computed

by use of formulas based upon a homogeneous material, although

bi-directional (0-90) specimens are employed. In other words, the geometry

of the stacking sequence is not taken into account.

In 1949, Hoff [Ref. 2] presented flexure formulas which, although they

were based on an elementary strength of material consideration, appeared to

be quite adequate to describe the bending of unidirectional or bi-directional

beams. These theoretical equations, in conjunction with flexure experiments,

can be utilized to calculate intrinsic material properties. Certain difficulties

are still encountered in the calculations when highly anisotropic composites

are tested. Pagano [Ref. 3] reviewed Hoffs equations and expressed them in

a more convenient form for computational purpose.
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In 1974, Hann and Tsai [Ref. 4] presented graphs to determine the

laminate stiffness and strength for the [00/+450/900] boron fiber/epoxy and

declaimed that a set of generalized graphs for all practical laminates of a

given composite can replace the current limitation of one set of graphs for

each discrete laminate.

The first calculation of the effect of a circular hole on the stress

concentration in a plate was published by Kirsch [Ref. 5] in 1898. He dealt

with isotropic plates and computed the stress concentration factor of 3.

Continuous efforts were made by many researchers to work on the stress

concentration for various cases. To predict the strengths of laminated

composites containing through the thickness discontinuities, two related

criteria based on the normal stress distribution were developed. Whitney

and Nuismer [Ref. 6] considered a circular hole of radius R in an isotropic

plate of infinite extent with the origin of the x-y axes system at the center of

the hole. A uniform tensile stress was applied parallel to the y-axis at

infinity. As the first failure criterion, they assumed that failure occurred

when the stress over a characteristic distance, d., away from the

discontinuity was equal to or greater than the strength of the unnotched

material. They proposed the second failure criterion stating that failure

4



occurred when the average stress over a distance, ao, from the discontinuity

equaled to the unnotched laminated strength. The criteria included the size

effect of discontinuity. Later on, Konish and Whitney [Ref. 7] found that

simply scaling the stress distribution for an isotropic plate containing a hole

by a ratio of the isotropic and orthotropic stress concentration factor to get an

approximate stress distribution in an orthotropic plate with a hole might lead

to significant errors even close to the hole boundary, particularly if the

integral of the stress distribution was used as a strength criterion in the

former study. They proposed a simple polynomial which was obtained by

adding sixth and eighth order terms to the isotropic solution in order to get

an approximation for the normal stress distribution adjacent to a circular hole

in an infinite orthotropic plate.

In 1981, Hoff and Muser calculated the stress concentration factors for

circular holes in circular composite plates of cylindrical orthotropy when the

outer edge of the plates were subjected to a uniform uniaxial traction. They

showed that the stress concentration factor can be plotted in a diagram as a

function of S. (the compliance in radial direction) and S (two times

tangential compliance plus shear compliance) if the ratio R of the plate to the

diameter of the hole was prescribed. They also made a conclusion that the

5



stress concentration factors depended primarily on the local arrangement of

the fiber at the e4,,e of the hole [Ref. 8].

Chang and Chang [Ref. 9] presented a progressive damage model to

assess damage in laminates with arbitrary ply-orientations and to predict

ultimate tensile strengths of notched laminates. They developed a nonlinear

finite element program for laminates containing a circular hole. They

claimed a good agreement was found between the numerical prediction and

the experimental data.

6



IlL EXPERIMENT

This section explains the plate bending theory for laminated composites

to obtain composite material properties from bending tests. The experimental

apparatus used, the laboratory condition, and the testing procedure are also

described.

A. PLATE BENDING THEORY

Because the flexural test is performed to obtain material properties of a

graphite/epoxy composite, the plate bending theory for laminated composites

is reviewed below.

For the classical plate bending theory, the following assumptions are

made. It is assumed that the laminate thickness is small compared to its

lateral dimensions. It is also assumed that there exists a perfect bonding

between any two laminae. That being so, the laminae are not capable of

sliding over each other and they have continuous displacements across the

interface. It is made another important assumption: namely, a line originally

straight and perpendicular to the laminate midplane remaines so after

deformation.
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Finally, the so-called Kirchhoff assumption is made which states that

in-plane displacements are linear functions of the thickness and interlaminar

shear strains in the x-z and y-z planes are negligible. These assumptions

reduce the laminate behavior to a two dimensional analysis of the laminate

midplane.

The three-dimensional strain-displacement relationships are:
Ou

a~w

.0u ft + v ................... ....... (1Oxy
o•Ow

SZ ax
Sxz 0

Based on the Kirchhoffs assumption, the in-plane displacements are linear

functions of the thickness coordinate z,

u - u0 (xy) + zF1 (xy); v - v0 (xy) + zF2(xy) ...................... (2)

where u; and v0 are in-plane displacements of the midplane. From the

Kirchhoffs assumption, Eq. (3) is also obtained.

e= -"Fl(xy) + h -O; eyz -F 2(xy) +! "-0 .................. (3)

It follows therefore that the vertical displacement of any point does not

change in the thickness direction. Finally, the three in-plane strain

components are expressed as

8



ex M - __ 02w 2

V - a2w o0Ey = h =. .- a 2  n-ey + y ......................... (4)

exy - 2 + -. O + zkxy

where

[kl

0o kxyj

Cly ax 222-y
A wo•

Equation (4) can be expressed in the compact form as given bellow:

ex 8x -0xey - y• + z ky ......................... (5)

£exy x y

Now, it is considered a composite made of n stacked layers or plies. Let

t be the total thickness of the laminated composite plate. Then, the

constitutive relationship for the k-th layer is

[IO k = [Q k[ek ................................... (6)

where (Q)k is the transformed reduced stiffness matrix. Substitution of

Eq.(5) into Eq.(6) yields

[aJk - [P k[-0 ] +z[Q k[k. .................................. (7)

Since a laminated composite is in the state of plane stress, there are three

stress components. The three stress components produce the following stress

resultants:

9



V. /
Nx hd-ie/2 o ens
N~y -jf o•.............. (8)
Nxy -_J• FTy(

These stress resultants have the dimensions of force per unit length. These

resultants give the total force per unit length acting at the midplane.

Additionally, moments which are produced by the stresses with respect to

the midplane are also applied at the midplane, and they are written as

Mx _-'2 oxzd

My - 4-t2 oyza* ........................ (9)

Mxy - A- Txyzd

From above equations, the stress resultants are written as a summation over

n plies, i.e:

Nx - All A12 A 16  8O _ [B 11 B 12 B 16  kx

Ny -A12 A 2 2 A2 6  sy + B 12 B22 B2 6  ky ....... (10)

Nxy A 16 A 2 6 A66 O B 16 B26 B66 kV

or

[M - [A1e 0] + [[k ............. (11)

Similarly,

[Mi - [B]ireo + [D[k ........... (12)

where
n

A Y k~l: (Qy)k(zk - zk-1)

10



B n ,

Rewriting Eqs.(1 1) and (12) together gives
r:#+k-z _,[ , z2 .................... )Y~ r1kED k k-1)

In the present study, four different laminates, [00124, r9o00]4, [0°/9001]1,

and [(D45/-45°)]s, subjected to pure bending moments tudied. Since

[0°]24 and [9O0°] laminates have similar stacking properties, they will be put

into the same case to discuss:

1. Case I - [0O]u and 19900 ] laminates:

For both [0O]J+ and [90O] laminate composite subjected to pure

bending moments, Eq.(12) becomes:

N ] _[Dl [kl ....................... (15)

because the matrix [B] will become zero for a symmetric lay-up.

That is,

[y D12 D2 2 D26  y...........(16)
Mxy D16 D26 D66 y

Since there is no midplane stretch,

[el - - [k] ..................... (17)

Substitution of Eq. (17) into Eq. (16) and inverse of the resultant expression

gives

11



ex ]I J I D12 D16 "I-Mx]
ey" D 12 D 22 D 26  My ................. (18)

exy D 16 D26 D66 MXY

Because D,6 and D2. are equal to zero for unidirectional laminates (0'

or 90%) and cross-plied laminates (00/900), Eq. (18) becomes:[ 1 DI, D12  0 -
ey -- z D 12 D 22  0 MY

exy 0 0 D66 M1 y

2 o ................. (19)
0 0 D66 -Mxy

where:

DI1 D 12  0

A-det D 12 D22 0

0 0 D66

D*11 - D22D6

D* 12= -D 2D

D*,= DlID6 ....................... (20)

D*6- D1 ID22-D 2
12

That is,

e[ D2By 1D 12 D6 6 0D1 D

ey zD 22 D 6 6 -D 1 2  D 6 6 DlDMy ........ (21)

exy, 0 D11D -D22 mx

12



If subjected to a uniaxial pure bending moment: MM,=K; MK=Mu=O, the

strains are expressed as functions of the layer's thickness, material

pr tes, and the bending moment. In other words,

ex - - _.. . . . .M.. ................. (22)D11

For the four-point bending test as shown in Fig. 1,

where :

p- load (lb)

a- length of moment arm (in)

w= plate width.

Rewriting Eq.(22) for DI, gives

D - e..xMO - 2ta ..... (23)2axw

For [0J24 and [90u laminates, DI1-2*h 3*Q1 1/3 , D12-2*h 3*QIJ3 , and

D.=2*h3*Qz/3 where h is a half of the total plate thickness. As a result:

Q11 - 3 ..... 3az ............ (24)
4h3 exw 4n3w ex

Since y -mTxy - 0. Eq. (6) yields

Ox" 3p= ....................... (25)

4h3 w

13



P

laminate
-- a- sample

142 L142

Figure 1. 4-point bending test
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2. Case II - [0/90I% cross-ply laminate:

The derivation is similar to that for [00] and [900] laminates.

However, since [0°190011 is n.. ;ymmetric, the matrix [B] will not reduce to

zero and the situation becomes more complicated.

The stacking sequence and the thickness of each corresponding ply

are shown in Fig. 2. From Equation (13), the [A], [B], and [D] matrices for

[0/90/0]2 are obtained as when each layer has the same thickness.

All'h*[(Qll) + (Qn)], A=-All

A12=2h*(Q,2), A16=AwwO

Att-2h*(Qw),

B11~hZ*[(Q,1 ) +4* (Q0u)]/ 9 6 , B,,h 2*[4*(Ql) + (Q22)]/96

B12-5h2*(QI2Y96, B=BN=O. (26)

B -5h2*(Q 9%,

DlIhW*[(Qjj) + (Q2)]/3, D2,=DIm

D,2=2h 3*(Q 1)/3, D16 =D4-0

De=2h3*(Qa)/3.

3. Case III- [+45I/-451 laminates:

15
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0

90 _ _ _ _ _

090
0

90 zO
0 Z8 7

90 z20 z6 Z5 z4 z3 ,

90 ---- 1 z8 V

90 90~ ~~ ~1 Z11 Iz23 IIIII 1

900 Z15 z17

90

9090
0

90

Figure 2. The stacking sequences and corresponding
layer thickness of [0/90] laminate
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For the [(+450/-45)]. laminated composite plate, the derivation

procedure is also more complicated than the [0P ] and [90] laminates. Due

to symmetry, matrix [B] becomes null and the detail of matrix [D] is

provided below:

ex [D* I D* 12 D* 16  Mx1
y-' -'L D*12 D*22 D*26  My .................... (27)

e'Ey D* 16 D*2 6 D'66 Mxy

where:

D* 6 =D22D•-D 2 2, D*,2=-D,2D,+D,,D2.,

D*,6=D,2D2C-D,6D2, D*22=DIID66-I•16,

D*2,=-DID2+D,2.DI,, D*66=DjjD2-D212

and

Di=h3*[(Ql) + (Q2) +2*(Q12) +4*(Q66)/6,

D22=D 11,

D12=h3*[(Q,,) + (Q=2) +2*(Q) -4*(QO)]/6, ......... (28)

,D16=D2hW*[(Qll) - (Q=)]/48,

D"=hW*[(Q,) + (Q=) -2*(Q12) 1/6.

In this thesis, Eq. (24) and the basic equations of material properties are used

to to compute the elastic modulii E 1, E_., ....etc. The details to calculate

these elastic modulii are given in the later chapter.

17



B. APPARATUS

All the bending tests were conducted in a laboratory whose ambient

temperature is 22.5+2.0*C with an average relative humidity equal to

41+5%. The MTS 810 Material Test System was used to conduct all the

bending tests.

The materials used during the experimental testing were graphite

fiber/epoxy composites with [0124, [90°24, [00/90M112, and [(+450/-45°)s

laminates. The experimental samples were cut from different orientation

laminate plates with nominal dimensions as 12" by 12" square and 0.15"

thick into small plates with length of 12" and width of 1". Some samples

were drilled a quarter inch hole at the center. A fixture was designed to hold

the composite samples in a simply supported configuration. Each sample

was positioned on the top of the supporters. A four-point bending test was

performed as shown in Fig 1.

Several strain gauges (1/4 inch CEA-13-250UN-350, with gauge factor

2.120 + 0.5%) were mounted on both sides of the samples. One strain gauge

was placed at the center of each side of [00], [(00/90).]s, and [+45°/-45)]s

laminae (without hole) for the purpose of obtaining the properties of

laminated composite. A [90M] laminate sample (without hole) was mounted

18



with two strain gauges on each side, one in the longitudinal direction, and

the other in the transverse direction.

Additional strain gauges were mounted on each sample with a 1/4" hole

at the center to measure the strain response of the sample under load more

accurately. Figures 3 to 6 show the locations of the strain gauges on each

sample. Tests of these samples were conducted with the MTS material

testing machine at a crosshead speed of 0.12 in/min ( or 0.305 mmn/min). The

MTS machine provided readings and a force-displacement print-out on the

x-y plotter (HP 7054A x-y Recorder) for the applied force and the

measurement of the deflection of the sample. Strain gauge outputs were

connected to a Measurements Group SB-10 Switch & Balance Unit, and

readouts, in microstrain, provided by Measurement Group P-3500 Strain

Indicator. The results were read and recorded manually upto the fracture of

the sample.

19



on the tension side:

gauge # 1

L/2 - L/2

on the compression side:

Sgauge # 2

IL/2 14L2

Figure 3. Strain gauge positions for [0], [0/90], and
[+45/-45] laminae without a hole

20



on the compression side:

on the tension side:

0.5" 0.5"

#3 #4

Figure 4. Strain gauge locations for [90] laminate
without a hole
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on the compression side: 0.5

0.125" 0.125"

#2

0.5"

on the tension side: 0.5"

0.1 25" II0.125-

1.5"

Figure 5. Strain gauge locations for [0] and [0/90]
laminates with a 1/4" hole at the center

22



on the compression side: 0.5"

0.125" .0125

d=44

on the tension side: 0.5"

1.0"
1.5"

Figure 6. Strain gauge locations for [+45/-45]
laminate with a 1/4" hole at the center
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IV. EXPERIMENTAL RESULTS

This section presents the results as obtained from the experiments.

While some description of the experimental and calculated results is

provided here, a more detailed explanation and physical interpretation of the

results will be given in the later chapter. In order to ensure consistency in

recording loading responses, samples were placed as uniformly as possible

with strain gauges in the same positions. The same crosshead speed and the

same procedures were also employed for each separate test. The results are

presented graphically and in a tabular form.

A. SPECIMENS WIT7- OUT A HOLE

The four different laminated composite samples without a hole were

tested to provide a basis to compute the material properties and to compare

with samples with a hole. Tables 1 to 5 show the loads and strains recorded

from each experiment for the samples. The load vs. strain relationship is

plotted in Figures 7 to 14.
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Table 1. results for a [0] laminate without a hole

load Ob) gauge# 1"* gauge# 2

55.5 395 -399

104 736 -745

150 1,015 -1,057

256 1,760 -1,795

298 2,035 -2,080

354 2,396 -2,456

402.5 2,712 -2,786

434 2,916 -3,001

497 3,319 -3,419

525.5 3,506 -3,617

596.5 3,950 -4,089

627 4,138 -4,289

694 4,561 -4,742

717 4,701 -4,892

780 5,082 -5,303
811.5 5,271 -5,509

887 5,729 -6,009

933 5,998 -6,305

986 6,315 -6,654

1,040 6,650 -7,007

1,070 6,836 -7,193

1,100 6,995 -7,366

1,130 7,177 -7,565

1,166 7,385 -7,779

1,200 7,558 -7,864

*: failure occurred at approximate 1210 lbs.

**: see figure 3 for the strain gauge locations.
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Table 2. results for a (90] laminate without a hole

load(lb) gauge# 1** gauge # 2 gauge # 3 gauge # 4
10 22 -941 -18 996
20 55 -2,264 -46 2,438
25 70 -2,924 -62 3,160

*: failure occurred at approximate 28 lbs.
**:see figure 4 for the strain gauge locations.

Table 3. results for [(0/90)]1,2 laminate without a hole

load (lb) gauge# 1I* gauge # 2
29 -798 755
59 -1,644 1,540
90 -2,518 2,344

119.5 -3,332 3,078
149 -4,158 3,835

180 -5,015 4,601
208 -5,822 5,317

240 -6V750 6,126

267 -7,666 6,914
297 -8,652 7,749
326 -9,756 8,660
361 -11,334 9,944
391 -12,962 11,255

*: failure occurred at approximate 401 lbs.

see figure 3 for the strain gauge locations.
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Table 4. results for [+45/-45]-(1) laminate without a hole

load (b) gauge # 1** gauge# 2

30 1,767 -1,803

60 4,678 -4,871

90 8,654 -9,388

107 13,759 -16,064

*: no breakage occurred, quit recording due to a very large deflection.

**: see ..pre 3 for the strain gauge locations.

Table 5. results for [+451-45]-(2) laminate without a hole

Ioadi(b) gauge # ** gauge # 2

4.5 339 0

29.5 1,544 -1,272
61 3,099 -2,969

90 4,576 -4,633

122 6,425 -6,805

150 8,057 -8,799

180 9,767 -10,980

210 11,795 -13,708

240 14,783 -18,065
*

no breakage occurred. quit recording due to a very large deflection.

see figure 3 for the strain gauge locations.
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L SAMPLES WITH A 1/4-INCH HOLE AT THE CENTER

Similarly, three different laminated composite samples, [01, [(0/90()]12,

and [(+450/45%, with a quarter inch hole at the center of the plate were

tested. Five strain gauges were mounted with three on the tension side and

two on the compression side for each sample. The three gauges on the

tension side were placed with two at a distance of 0.5 in. away from the

center and another one at 1.25 in. The locations of strain gauges are shown

in Figures 5 and 6. The results for each sample were recorded in order to

compare them with the data obtained from the previous section (section A).

Table 6. results for a [(+45/-45)ljs laminate with a 1/4-inch
hole at the center

load Qb) gauge#1** gauge#2 gauge # 3 gauge # 4 gauge # 5
0 0 0 172 0 0

29.5 -2,910 -2,834 2,997 2,683 2,999
49.5 -5,151 -5,022 5,210 4,711 5,369
69.5 -7,834 -7,686 7,908 7,066 8,180
84.5 -10,783 -10,670 10,857 9,465 11,247
90 -12,282 -12,151 12,320 10,619 12,748

*: no breakage occurred. quit recording due to a very large deflection.

**: see figure 6 for the strain gauge locations.
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Table 7. results for a [0] laminate with a 1/4-inch hole at the center

load Ob) gauge# 1* gauge # 2 gauge # 3 gauge # 4 gauge # 5
0 0 0 167 0 0

30 -405 -428 578 444 425

49.5 -703 -736 868 753 720

72 -1,049 -1,099 1,210 1,116 1,068

91 -1,341 -1,403 1,496 1,418 1,358
112 -1,656 -1,726 1,800 1,737 1,666

133 -1,996 -2,070 2,127 2,075 1,989
152 -2,277 -2,352 2,398 2,353 2,254
171 -2,579 -2,649 2,688 2,648 2,532

190.5 -2,882 -2,949 2,977 2,943 2,813
210.5 -3,190 -3,252 3,270 3,240 3,095

230 -3,509 -3,575 3,542 3,568 3,366
250 -3,822 -4,133 3,838 4,164 3,574
270 -4,193 -4,530 4,187 4,600 3,827

290 -4,520 -4,878 4,480 4,954 4,057
310 -4,853 -5,227 4,775 5,320 *4173

320 -5,412 -5,420 5,551 5,500 *2655

*: gauge # 5 indicates failure between 310 and 320 lbs.

**: see figure 5 for the strain gauge locations.
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Table 8. results for a [0/90] laminate with a 1/4-inch hole
at the center

load Qb) gauge #1 gauge # 2 gauge # 3 gauge # 4 gauge # 5

20.5 -552 -538 527 542 496

41 -1,110 -1,087 1,044 1,072 979

60 -1,627 -1,594 1,519 1,557 1,418

80.5 -2,184 -2,133 2,026 2,072 1,882

100.5 -2,741 -2,670 2,533 2,585 2,339
131 -3,567 -3,462 3,286 3,342 3,014

160.5 4,363 4,239 4,006 4,075 3,679

190 -5,165 -5,038 4,734 4,826 4,360

220 -5,998 -5,843 5,486 5,563 5,047

*: failure occurred at approximate 228 lbs.

**: see figure 5 for the strain gauge locations.

C. CALCULATIONS FOR MATERIAL PROPERTIES

1. Poisson's ratio v2,:

By definition, vu is the Poisson's ratio for the transverse strain in the

j-direction when stressed in the i-direction, which means
eI

v2 1 - - 2 ............................. (29)
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for a stress applied in the 2-direction. Applying the result of the [900]

laminate experiment to Equation(29), the average value of v 21 is found to be

0.02225.

2. Elastic modulii E11 and E2, & Poisson's ratio v.:

Here, in order to obtain the material properties, E,, and E2, a

regression analysis using a FORTRAN program was performed to linearize

the ratios of load vs. strain for [00] and [900] laminates. As a result,

(p/Ex)0 0 - ±154.95 x 103 and (p/ex)900 - ±7.245 x 103

Since
Ell

Q1 = _1-v1 2 v2 1
E22 ............... .. .. . .. .. . .. .. . .. (30)Q22" m l~v2*21

Q1 2E22I22 _vl2v21

plugging Eq. (24) and Eq. (30) into Eq. (29) results in the following

relationship:

ElIE22 2 w,( 3a-2)(p/Ex)0o. ..................... (31)E22-El11v21 4wh'

E2
22 -.( 3--)(p/ex),•0 ............. (32)

ý2 4wh2E22-E I I 21 4w'

After calculations, results for these two elastic modulii are:
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E- 6.273 x 10' psi ; En- 0.3649 x 106 psi

From
V Elil

12 " 221

we also get

v12-0.3825.

3. Shear modulus G,2 :

A Matlab program was written in order to compute the material

property, G12. The experimental result of load vs. strain ratio of the

[(+450/-45)j, laminate was compared with the load vs. strain ratio

calculated from the program using a guessed value of 01. The Incremental

Search method was employed to determine the correct guess value for GM

iteratively. The shear modulus 01 obtained from this way was 1.045x10W psi.

D. CALCULATIONS FOR STRESS & STRESS CONCENTRATION

FACTOR (SCF)

The failure load for each sample is shown in Table 9. Here, stresses are

calculated at z- +h or -h (at the top or bottom of the sample) for each
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sample. From Eq. (25), the failure stress for [00124, [90012, and [(+450/-45)js

laminae are

q0/wo - 1.840x10 5 psi/per unit length,

a0/w - 1.26x10 5 psi/per unit length,

090/wo - 5.08x10 3 psi/per unit length,

o45/wo - 61.86xj0 3 psi/per unit length,

o45/w - 29.67x10 3 psi/per unit length.

where subscripts wo and w indicate "without a hole" and "with a hole",

respectively.

Table 9. dimensions and failure loads of samples

laminate length moment arm failure (ib)

[01,Wo 5" 1.5" 1,210

[01W 10" 3" 310

[90]O 8" 2" 28
[0/90]J, 10" 3" 401

[0/90]w 10" 3" 228

[+45/-45]wo 10" 3" *240

[+45/-45]W 10" 3" *90

*: failure due to a very large deflection.
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For [00/90011, the matrices [A], [B], and [D] were calculated from Eq.(26).

Plugging these data into Eq.(14) and Eq.(7), the failure stress for the

[0o/901i] laminate are

o0/90-top/wo - 213.86x10 3 psi/ per unit length,

'ol90-boflomlwo - 12.53x10 3 psi/ per unit length,

go/9o-top/w - 162.13x10 3 psi/per unit length,

o0/9_Obottom/w - 9.49xI03 psi/per unit length.

Based on these data, the experimental stress concentration factors (SCF) for

laminated composites are 1.46 for the unidirectional plate and 1.32 for the

cross-ply plate if the failure occurs due to the largest stress at an edge of the

hole.
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Figure 7. Stress- strain diagram for [0] laminate without a hole
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Figure 8. Stress- strain diagoam for [0] laminate with

a 1/4" hole at the center
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Figure 9. Stress- strain diagram for [90] laminate without a hole
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Figure 10. Stress- strain diagram for [0/90] laminate without a hole
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Figure 11. Stress- strain diagram for [0/90] laminate
with a 1/4" hole at the center
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with a 1/4" hole at the center
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V. FINITE ELEMENT ANALYSIS

A. OVERVIEW

Since the earliest development of the finite element method, a large of

plate bending elements have been developed and reported in the literature.

For example, Batoz et al. [ Ref. 10], with the purpose of identifying the most

effective element for the thin plate analysis, presented an assessment of flat

triangular plate bending elements with displacement degrees-of-freedom at

the three corner nodes only. They claimed that the most efficient and reliable

three-node plate bending elements were based on the discrete Kirchhoff

theory and a hybrid stress model. Later on, he [Ref. 11] also presented the

explicit expression of the stiffness matrix of the nine degree-of-freedom

plate bending triangular element (called discrete Kirchhoff triangle) which

allowed, as he said, a significant reduction of algebraic operations in the

evaluation of the stiffness matrices and bending moments.

In 1983, Fricker [Ref. 12], based on Razzaque's report, described a new

three-noded triangular element for plate bending with an extra internal

"bubble' function proposed by Irons for making the Razzaque's element more
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flexible. He also claimed that his element and that developed by Hansen,

Bergan, and Syvertsen were the two most accurate triangular thin plate

elements currently available. Furthermore, Lee and Zhang [Ref.13]

developed a six-node plate bending element based on a modified

Hellinger-Reissener principle and the Reissner-Mindlin plate bending theory

to obtain more accurate and reliable solution.

In this thesis, a triangular plate bending element, which was developed

by Tocher(Ref. 15], is used to analyze the laminated composite plates

subjected to a pure bending load and to determine the deflections, strains,

and stresses of the plates.

B. TRIANGULAR PLATE BENDING ELEMENT FORMULATION

The plate, in general, may have any irregular geometry and loading.

The derivations are based on assumptions of the small deformation theory,

described in the earlier chapter. A triangular plate element is employed for

the following developement. Each nodal displacement of the element

possesses three components: a displacement in the z direction, w; a rotation

about the x axis, wy (derivative of w with respect to y); and a rotation about
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the y axis, w, (derivative of w with respect to x), as shown in Figure 15. The

displacement function, w, is assumed to be

w(xy) -aI + ax + a-. * a4 x 2 + atxy + a~y2 +a7x3 + ag(x2y + xy2 ) + a

- n]a ..................... (33)

where

[n] =[l1 x y x2 xy y x3 (x2 y+x)y 3 ] ................. (34)

and

a1

a2

F.. .. a .................. (35)

a9

Here, the constants a&, a2 . . . . . .. , a, must be determined from the nodal

conditions

w(x,y)-q,, wy(xy)-q2, -w,(xy)-q3 at (xl,y)=(OO)

w(x,y)-q4, wy(xy)-q, -w,(xy)-c6 at (X2,y 2)=(O,y2) .................. (36)

w(xy)-q•, wy(xy)-q., -w1(xy)-q6 at (y3)=(- y3

The local y axis is taken the same as the line connecting the node 1 and node

2 with the origin placed at node 1. The local x axis is taken towards node 3

as shown in Figure 16. By using Eq.(33), Eq.(36) can be shown in the matrix

form as
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q7 
=Q3k-'V. 
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Figure 15. Nodal degrees of freedom of a triangular plate
in bending
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Figure 16. Local nodal coordinate system
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(e)

q2
q - -[n']-a ............. (37)

q9

where [n] is a 9x9 matrix (see Appendix). By using Eqs.(33) and (37),

Eq.(4) can be expressed as

-.- . [- if].... (38)

where

0002006x 2y 0
0 000002 0 2x 6y (39)
0 0 0 0 2 0 0 4(x+y) 0

and

[H ................ (40)

Finally, the element stiffness matrix in the local (xy) coordinate system can

be written as

[Kee)] j Im [JT[~lo .[......... (41)

where VO) indicates the volume of the element and the matrix [QJ is the

material property matrix for the generally orthotropic lamina. By substituting

for [HM from Eq.(40), Eq.(41) becomes

[ <>I] [ ) ,, 1 }-/2 I }] ............. (42)

where t is the thickness of the plate. For a laminated composite plate
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- 2 z2[ 3 _ •Qk3(_, - [D] ....................... (43)
QJdz [Qk( ) 3.( k-43

and the components within the bracket of Eq.(39) won't vary with the

thickness. The element stiffness matrix in the local (x~y) coordinate can be

rewritten as

[K(e)- - ([n]-) 7[qT[Dj[nd41[n'I ................. (44)

where

[00 0 200 6x 2y 01
[C - 000o0 2 0 2x 6y ....................... (45)

0 0 0 0 2 0 0 4(x+y) 0

The area integrals appearing inside the bracket of Eq.(44) can be calculated

in terms of the global XY coordinate system as well as in terms of local xy

system chosen in Figure 16 from the following relations:

J'are d -L½x3.Y2 ....................... (46)

d-dy " . 2 ....................... (47)

SJ .d4 ' -. x 3 .Y2.(Y2 +Y3) ....................... (48)

Ja" ddy _Ix3Y2 ......... .. ............ (49)

12

y. - -x y2 2+2 ,3) ....................... (50)

J& . - x.3 X Y2(Y2  +Y2Y3 2 ....................... 2(51)

Appendix shows the detailed cauculations of the local element stiffness
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matrix. Finally the element stiffness matrix from Eq.(44) in the global

coordinate system whose XY plane is assumed to be same as the local xy

plane) can be obtained from

(KI(e) . [pj 7k(e)]fl ....... (52)

where the transformation matrix [p] is given by

1 0 0 00 0 00 0
O lox mox O 0 0 0 0 0
O loy moy O 0 0 0 0 0
0 0 0 1 0 0 0 0 0

[p]- 0 0 0 0 lox mox 0 0 0 ....................... (53)
9x9 0 0 0 0loymoyO 0 0

0 0 0 00 0 1 0 0
0 0 0 0 0 0 Oloxmox
0 0 0 0 0 0 Oloymoy

where (lox, mox) and (Joy, moy) represent the direction cosines of the lines ox

and oy respectively.

After each element stiffness matrix is calculated, it is assembled into

the global stiffness matrix. The resultant matrix equation becomes

[KJ[w] - [Fl ....................... (54)

where [F] is the force matrix.

In order to compute stresses and strains, post-processing is

accomplished. After obtaining displacements, local strains are extracted

from the global displacements. To this end, the local coordinate, matrix [n'],
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direction consines, and the transformation function for each element are

calculated. Then, the local strain vector is

[ee] - [p][aj ....................... (55)

where matrix (H'] is the same as matrix [H] except that x is one-third of

(x,+x2+x,) and y is one-third of (y,+y 2+y3) and z- +h and -h in order to

compute strains at the top and bottom sides of the plate. In addition, [d] is

the nodal displacement vector of an element. The local strain is transformed

into the global strain by using the following equation:
(e) -, ....................... (56)

where

[ x 4 _lox *mox1
-[7 o * too 21ox * tlo• *lox 2

At the end, stresses are computed from the strains using Eq. (6). These are

the global stresses.
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VL NUMERICAL RESULTS AND DISCUSSION

A. NUMERICAL RESULTS

In order to calculate the strain and stress for a laminated composite

plate with a quarter inch hole at the center and subjected to a pure bending

moment, a program named MFEM.M is written in Matlab. With an input for

material properties, plate dimensions, the applied bending moment, and the

failure load of the material, this program calculates the deflection, strain, and

failure stress for each element. Another program named DMTRX.M is also

written in Matlab which is capable to calculate the stiffness matrix [Q] for

four different kinds of laminae [00], [900], [00/900]C, and [(+45°/-45)js.

In this thesis, a laminated plate with a quarter inch hole at the center is

modeled with 214 nodes and 371 elements, which generates 642 by 642

stiffness matrix (642 dof) as shown in Figure 17. After calculations,

normalized stresses of stress concentration and the normalized failure

stresses v.s the distance away from the circular hole edge for [0]24 and

[0°/90]12 are plotted in Figure 18 through 23. As a result, the stress

concentration factor calculated from the F.F. analyses for the [00]24 laminate

is 1.47 and that for the [00/90012 is 1.27. Normalized failure stresses for the
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[00124 laminate, the top [01 layer and bottom [9001 layer of the [00/90]12

laminate are all close to one at the edge of the hole.

I. DISCUSSION

Whitney and Nuismer [Ref. 7] said that when the stress at a

characteristic distance, d0, away from the discontinuity would be equal to or

greater than the strength of the unnotched material, failure would occur. In

this current work, the constant value, d., for the [0124 and [00/901,2 laminae

is zero from the results. Thus, the failure criterion of Whitney and Nuismer

assumption is not suitable in this kind of graphite fiber/epoxy. Since it is of

great importance for design purpose to be able to predict the strength of a

composite under loading conditions prevailing in service, some failure

criteria like the maximum stress criterion and the Tsai-Hill failure criterion

are used in order to predict the failure and check the failure criteria.

1. Maximum Stress Criterion

This criterion tells that failure will occur when any one of stress

components is equal to or greater than its corresponding allowable strength.

Since the stress in the x-direction is the dominant stress in this current work,

failure will occur when
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;a XT ............. (57)

where XT3 is the ultimate uniaxial tensile strength in the fiber direction ( in

this case, x-direction).

2. Tsai-HiU Criterion

According to the Tsai-Hill criterion, failure of an orthotropic lamina

will occur under a general stress state when

02 2 2
1 ul c_2 02 12 ....... (8

X2  X2 y2 1S28

where X, Y, and S are the longitudinal tensile failure strength, the transverse

tensile failure strength, and the in-plane shear failure strength, respectively.

Figures 7 through 14 show that for this particular laminated composite

failure occurred almost simultaneously on both compressive and tensile

sides. From figures of normalized failure stresses, it is obvious that failure

occurred at the hole edge when the stresses at the hole edge were equal to

their corresponding allowable strengths.

Stress concentration factors obtained from the experiments and

numerical analyses are nearly the same for both [00124 and [00/900112
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laminated plates. This result confirm that failure occurs when the maximum

stress at the edge of a hole is the same as the material strength.
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x

Figure 17. x-y plane view of the FEM mesh of the composite
plate with a circular hole.
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Figure 18. Stress concentration factor for (01 laminate
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Figure 20. Stress concentration factor for [0/901 laminate at
bottom layer-[90]
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Figure 22. Stress distributions for [0/90] laminate at top layer-[O]
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Figure 23. Stress distributions for (0/90] laminate at bottom layer-[90]
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VIL CONCLUSIONS

In this thesis, a four-point bending test is used to investigate the failure

strain and failure stress for a graphite-fiber/epoxy composite of four different

laminated plates. From experimental results, composite elastic modulii are

obtained and the stress concentration factors due to a quarter inch hole

located at the center of the plate are calculated. Furthermore, a numerical

analysis using the finite element method is conducted to simulate the plate

under the same loading condition. By using both experimental and numerical

results, the characteristic distance d4, which determines failure based on the

Whitney and Nuismer theory, is examined. Finally, the maximum stress

criterion and the Tsai-Hill failure criterion is applied to check the failure of

composite. These failure criteria confirm that failure occurs when the

dominant stress component of the laminated composite is equal to its

maximum allowable strength. From this work, it is also concluded that:

* the four-point bending test is a good way to investigate material

properties although it is a little more complicated to conduct than the

tensile test.
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* The characteristic distance for the Whitney and Nuismer theory is

zero for the present composite material. Both the maximum stress

criterion and Tsai-Hill failure criterion are proper to predict the

failure for this material.
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APPENDIX

The Mn'] matrix in Equation (37) is

"1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0-1 0 0 0 0 0 0 0

1 0 Y2 0 0 y,2 0 0 y3
0 0

0 0 1 0 0 2Y2 0 0 3y2

0-1 0 0 -Y2 0 0 _Y,2 0
1xY3 2 2 3 2 2 31 ~x3 3 X3 3y3 y3  x3 (x3y3 +x3y3 ) y3

00-10 2X 3 -Y3 0 -32-Y 22
2 20

0-10 Zr -Y 0-3 3 ( 3 +2x3y3 ) 0

The detail calculations of [CfT[D][C] in Equation (44) are shown as

0 0 0
0 0 0
0 0 0
2 0 0 [DI D 12 D 16 1

[CJT[D]= 0 0 2 D1 2 D22 D26
0 2 0 D1 6 D26 D66 j 3x3
6x0 0
2y 2x 4(x+y)

L0 6y 0 9x3
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0 0 0

0 0 0
0 0 0

2DIl 2D 12 2D16
[C]T[D]J 2D016 2D26 2D66

2D 12 2D22 2D26
6xD1 1 6xD 12 6xD 16

A1  A2  A3

6yD 12 6yD22 6yD2 6

where
A1 = 2yD1 1 + 2xD 12 + 4(x +y)D16

A2 - 2yD 12 + 2xD2 2 + 4(x +Y)D2 6

A3 - 2yD 16 + 2xD 2 6 + 4(x +Y)D 6 6

and

00 0 0 0 0 0 0 0
000 0 0 0 0 0 0
000 0 0 0 0 0 0
0 0 0 4D/1 1  4D 16  4D 12  12XDll A4 12yD 12

CIT[D][C] =0 0 0 4D/16  4D66 4D 2 6  12xD 16 A5 12yD 2 6

0 0 0 4D 12  4D 26  4D 2 2  12xD 12 A6 12yD2 2

0 0 0 12XDll 12xD 16 12xD 12 36x2 Dll A7 36xyD 12

000 A4 A5  A6  A7  A8  A9

0 0 0 12yD12 12yD 2 6 12yD2 2 36xyD 12 A9 36y2D22
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A4 = (4D 12 + 8D 16 )x + (4D 11 + 8D 16 )y

&5 - (4D2 6 + 8D66)x + (4D 16 + 8D 6 6 )y

A&6 - (4D2 2 + 8D 2 6 )x + (4D12 + 8D 2 6 )y

Ak7 - (12D12 + 24D 16 )x2 + (12D 1 1 + 24D 16 )xy

A8 = (4D2 2 + 16D 2 6 + 16D 6 6 )x2 + (8D 12 + 16D 16 )xy

+(16D2 6 + 32D 6 6 )xy+ (4D 1 + 16D 16 + 16D 6 6 )xy

A9 = (12D)22 + 24D 2 6 )xy + (12D 12 + 24D 2 6 )y2

Thus, the area integrals inside the bracket of Eq.(44) can be obtained

000 0 0 0 0 0 0
000 0 0 0 0 0 0
000 0 0 0 0 0 0
000 A1 A 2 A4 A7 All A 16

ff'[C]T[D][CqdA4 000 A 2 A 3 A 5 A8 A 12 A 17

A 000 A4 A 5 A6 A9 A 13 A 18

0 00 A7 A8 A9 A 10 A 14 A 19

0 0 0 All A 12 A 13 A 14 A 15 A2 0

0 0 0 A 16 A 17 A 18 A 19 A2 0 A2 1
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where: Alm2D 11X~y2, A2 -2D, 6x3y2 ,

A3-2DUX3y2 , A4 2D,,2yx1'2 ,

As-2D6X3Y2 , A6-2D2X~y 2 ,

A7 =2D,,xV32 , AI-2D,6x3Y2 ,

A9=2D,ý 2xy, A10=3D ,X3 
3Y2 ,

A,, =(4D,2+8D,d)(x2 3y2)/6+(4D,, +gD,,)[x~y2(y2+y3)/6],

A,2u'(4D26+8D~d(.,xy)/6+(4D 6+8D~d[x 3y2 (-v2+y3)/6],

A,3=(4D22+8D2)(x2 3y2)/6+(4D,2+8D,)[x;y 2(y2+y3)/6],

A14=( 12D,2+24D,d(x33y2)/12+(12D,, +24D,d[x2 3y2(y2+2Y3)/24],

A,,=(4D,+ 16D6+ 1 6D,)(x3
3y2)/12

+(8D,2+ 16D,6+ 16D26+32D,)[eV2 (y2+2y3)/24]

+(4D,,+ 16D, 6+16DO)[X3 y2 2+Y2y3 +y2)/ 12],

A,6=2D ,2x3y2(y2+y3), A17-2D26x-3y2(y2+y),

A,3 =2D22x~y2(y2+y3), A,,=3D, 2x23y2(y2+2y),

An=( 12D=+24D26)[X2
3Y2(y2+2y)/24]

+( 12D12+24D26)IXy 2(y22+Y2Y3+Y2)I 12].

A2 1=3D2x 3 Y2(Y2
2+Y2Y3+Y2).
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